Schlagwort-Archive: ACS712

BitBastelei #224 – USB Power Monitor – Software

BitBastelei #224 - USB Power Monitor - Software

(42 MB) 00:24:11

2016-12-25 11:00 🛈

In Folge #222 hatten wir einen USB Power-Monitor gebaut, welcher Spannung und Strom misst und somit auch mAh und mWh berechnen können soll. Diesmal geht es um die Softwareseite – alles kein Hexenwerk (und vermutlich mit unzähligen Bugs), aber ein gutes Beispiel wie man verschiedene, einfache Codefragmente zu einer nützlichen Software kombinieren kann.

Quellcode:

@Github

/*
* USBMeter Test Sketch
* Copyright (c) 2017, Florian Knodt - www.adlerweb.info
* 
* Based on U8G2 HelloWorld.ino 
* Copyright (c) 2016, olikraus@gmail.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, 
* are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice, this list 
*    of conditions and the following disclaimer.
*    
*  * Redistributions in binary form must reproduce the above copyright notice, this 
*    list of conditions and the following disclaimer in the documentation and/or other 
*    materials provided with the distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
*  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
*  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
*  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
*  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
*  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
*  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
*  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
*  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
*  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
*
*/

#include <Arduino.h>
#include <U8g2lib.h>

#ifdef U8X8_HAVE_HW_SPI
#include <SPI.h>
#endif
#ifdef U8X8_HAVE_HW_I2C
#include <Wire.h>
#endif

U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);   // All Boards without Reset of the Display

unsigned int ref_u = 610;
unsigned int ref_i = 412;
unsigned int ref_i_o = 145;
unsigned int ref_i_mva = 131;
unsigned int ref_DP = 615;
unsigned int ref_DN = 613;
unsigned int ref_VCC = 616;
unsigned int ref_OV = 2175;

unsigned int AA0=0;
unsigned int AA1=0;
unsigned int AA2=0;
unsigned int AA3=0;
unsigned int AA6=0;
unsigned int AA7=0;

void setup(void) {
  pinMode(2, OUTPUT);
  pinMode(3, INPUT_PULLUP);
  pinMode(4, INPUT_PULLUP);
  pinMode(5, INPUT_PULLUP);

  analogReference(INTERNAL);

  Serial.begin(115200);
  Serial.println("USBMonitor Self-Test");
  
  u8g2.begin();
}

void printV(unsigned int volt) {
  unsigned int temp = volt / 100;
  boolean srt = false;

  if(temp > 10) srt = true;
  
  u8g2.print(temp);
  u8g2.print('.');
  if(srt) {
    temp = (volt % 100) / 10;
  }else{
    temp = volt % 100;
    if(temp < 10) u8g2.print('0');
  }
  u8g2.print(temp);
}


void printV(signed int volt) {
  if(volt > 0) printV((unsigned int)volt);

  u8g2.print('-');
  volt *= -1;
  unsigned int temp = volt / 100;
  
  u8g2.print(temp);
  u8g2.print('.');
  temp = (volt % 100) / 10;
  u8g2.print(temp);
}

void loop(void) {
  u8g2.clearBuffer();					// clear the internal memory
  u8g2.setFont(u8g2_font_unifont_t_latin);	// choose a suitable font
  
  u8g2.setCursor(10, 12);
  u8g2.print("SELF-TEST-MODE");

  u8g2.setCursor(0, 26);
  u8g2.print("S1:");
  u8g2.print((digitalRead(5) ? 1 : 0));
  
  u8g2.setCursor(42, 26);
  u8g2.print("S2:");
  u8g2.print((digitalRead(4) ? 1 : 0));
  
  u8g2.setCursor(85, 26);
  u8g2.print("S3:");
  u8g2.print((digitalRead(3) ? 1 : 0));

  u8g2.setCursor(0, 37);
  u8g2.print("A0:");
  //u8g2.print(analogRead(A0));
  unsigned int adco = (float)analogReadCache(AA0) * ref_u / 1000;
  printV(adco);

  u8g2.setCursor(64, 37);
  u8g2.print("A1:");
  //u8g2.print(analogRead(A1));
  signed int itmp=0;
  adco = (float)analogReadCache(AA1) * ref_i / 1000;
  itmp = adco - ref_i_o;
  itmp *= ref_i_mva;
  itmp /= 10;
  printV(itmp);

  u8g2.setCursor(0, 48);
  u8g2.print("A2:");
  //u8g2.print(analogRead(A2));
  adco = (float)analogReadCache(AA2) * ref_DP / 1000;
  printV(adco);

  u8g2.setCursor(64, 48);
  u8g2.print("A3:");
  //u8g2.print(analogRead(A3));
  adco = (float)analogReadCache(AA3) * ref_DN / 1000;
  printV(adco);

  u8g2.setCursor(0, 59);
  u8g2.print("A6:");
  //u8g2.print(analogRead(A6));
  adco = (float)analogReadCache(AA6) * ref_OV / 1000;
  printV(adco);

  u8g2.setCursor(64, 59);
  u8g2.print("A7:");
  //u8g2.print(analogRead(A7));
  adco = (float)analogReadCache(AA7) * ref_VCC / 1000;
  printV(adco);

  Serial.print((AA0));
  Serial.print(';');
  Serial.print((AA1));
  Serial.print(';');
  Serial.print((AA2));
  Serial.print(';');
  Serial.print((AA3));
  Serial.print(';');
  Serial.print((AA6));
  Serial.print(';');
  Serial.print((AA7));
  Serial.print(';');
  Serial.print(itmp);
  Serial.println();
    
  u8g2.sendBuffer();					// transfer internal memory to the display

  if(Serial.available() > 0) {
    char in = Serial.read();
    switch(in) {
      case '1':
      case 1:
        digitalWrite(2, HIGH);
        Serial.println("o1");
        break;
      case '0':
      case 0:
        digitalWrite(2, LOW);
        Serial.println("o0");
        break;
        
    }
  }

  //Wait 100ms to next display
  unsigned long lct = millis() + 500;
  while(millis() <= lct) {
    AA0 = (AA0 + (analogRead(A0)*10)) / 2;
    AA1 = (AA1 + (analogRead(A1)*10)) / 2;
    AA2 = (AA2 + (analogRead(A2)*10)) / 2;
    AA3 = (AA3 + (analogRead(A3)*10)) / 2;
    AA6 = (AA6 + (analogRead(A6)*10)) / 2;
    AA7 = (AA7 + (analogRead(A7)*10)) / 2;
  }
}

unsigned int analogReadCache(unsigned int out) {
  return out/10;
}
/*
* USBMeter Test Sketch
* Copyright (c) 2017, Florian Knodt - www.adlerweb.info
* 
* Based on U8G2 HelloWorld.ino 
* Copyright (c) 2016, olikraus@gmail.com
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, 
* are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice, this list 
*    of conditions and the following disclaimer.
*    
*  * Redistributions in binary form must reproduce the above copyright notice, this 
*    list of conditions and the following disclaimer in the documentation and/or other 
*    materials provided with the distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
*  CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
*  INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
*  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
*  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
*  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
*  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
*  STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
*  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 
*  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
*
*/

#include <Arduino.h>
#include <U8g2lib.h>
#include <Wire.h>
#include <EEPROM.h>

U8G2_SSD1306_128X64_NONAME_1_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);   // All Boards without Reset of the Display

//#define DEBUG

#define LED 13
#define FET 2
#define SW 3
#define RE1 4
#define RE2 5

#define ADC_U A0
#define ADC_I A1
#define ADC_DP A3
#define ADC_DN A2
#define ADC_VCC A7
#define ADC_OV A6

#define BROWNOUT 0 //4.6V - write EEPROM and shut down

static const float version = 0.02;

unsigned long lasttime = millis();
unsigned int runtime=0;

unsigned long lastkey = 0;
boolean lastkeyact = false;

unsigned int u_min = 475;
unsigned int u_max = 525;

unsigned int ref_u = 610;

/*
 * 10A

  unsigned int ref_i = 497;
  unsigned int ref_i_o = 174;
  unsigned int ref_i_mva = 146;
*/

/*
 * 5A
*/
  unsigned int ref_i = 412;
  unsigned int ref_i_o = 145;
  unsigned int ref_i_mva = 131;
/**/

unsigned int ref_DP = 615;
unsigned int ref_DN = 613;
unsigned int ref_VCC = 616;
unsigned int ref_OV = 2175;

unsigned int volt=0;
signed int amp=0;
signed int mAh=0;
signed long mWh=0;

char mAh_c=0;
char mWh_c=0;

unsigned int lastVcc=0;

unsigned int DP=0;
unsigned int DN=0;

byte signaling = 0; //0=open; 1=data; 2=apple-500; 3=Apple-1000; 4=Apple-2000; 5=DCP

/*
 * When D+ = D? = 2.0 V, the device may pull up to 500 mA.
 * When D+ = 2.0 V and D? = 2.8 V, the device may pull up to 1 A of current.
 * When D+ = 2.8 V and D? = 2.0 V, the device may pull up to 2 A of current.
 */

char flags[4];
byte uov = 0;
byte uovAct = 0;

byte menu = 0;
byte menuAct = 0;
char uartBtn = 0x00;

unsigned int adc_u = 0;
unsigned int adc_i = 0;
unsigned int adc_DP = 0;
unsigned int adc_DN = 0;
unsigned int adc_VCC = 0;
unsigned int adc_OV = 0;

boolean running = false;
boolean output = false;

void setup() {
  unsigned int tRead=0;
  
  // put your setup code here, to run once:
  pinMode(LED, OUTPUT);
  pinMode(FET, OUTPUT);

  pinMode(SW, INPUT_PULLUP);
  pinMode(RE1, INPUT_PULLUP);
  pinMode(RE2, INPUT_PULLUP);

  pinMode(ADC_U, INPUT);
  pinMode(ADC_I, INPUT);
  pinMode(ADC_DP, INPUT);
  pinMode(ADC_DN, INPUT);
  pinMode(ADC_VCC, INPUT);
  pinMode(ADC_OV, INPUT);

  digitalWrite(LED, LOW);
  digitalWrite(FET, LOW);
  digitalWrite(ADC_U, LOW);
  digitalWrite(ADC_I, LOW);
  digitalWrite(ADC_DP, LOW);
  digitalWrite(ADC_DN, LOW);
  digitalWrite(ADC_VCC, LOW);
  digitalWrite(ADC_OV, LOW);

  analogReference(INTERNAL); //1.1V internal bandgap reference

  EEPROM.get(0, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) u_min = tRead;
  EEPROM.get(2, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) u_max = tRead;
  EEPROM.get(4, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_u = tRead;
  EEPROM.get(6, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_i = tRead;
  EEPROM.get(8, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_DP = tRead;
  EEPROM.get(10, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_DN = tRead;
  EEPROM.get(12, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_VCC = tRead;
  EEPROM.get(14, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) ref_OV = tRead;
  EEPROM.get(16, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) mAh = tRead;
  EEPROM.get(18, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) mWh = tRead;
  EEPROM.get(22, tRead);
  if(tRead > 0x0000 && tRead < 0xFFFF) runtime = tRead;
  
  Serial.begin(115200);

  Serial.println(F("#BOOT"));
  Serial.println(F("#USB POWER Monitor - www.adlerweb.info"));
  Serial.print(F("#Version: "));
  Serial.println(version);

  Serial.print(F("#[C] uMin: "));
  Serial.println(u_min);
  Serial.print(F("#[C] uMax: "));
  Serial.println(u_max);
  Serial.print(F("#[C] ref_u: "));
  Serial.println(ref_u);
  Serial.print(F("#[C] ref_i: "));
  Serial.println(ref_i);
  Serial.print(F("#[C] ref_DP: "));
  Serial.println(ref_DP);
  Serial.print(F("#[C] ref_DN: "));
  Serial.println(ref_DN);
  Serial.print(F("#[C] ref_VCC: "));
  Serial.println(ref_VCC);
  Serial.print(F("#[C] ref_OV: "));
  Serial.println(ref_OV);
  Serial.print(F("#[C] mAh: "));
  Serial.println(mAh);
  Serial.print(F("#[C] mWh: "));
  Serial.println(mWh);
  Serial.print(F("#[C] runtime: "));
  Serial.println(runtime);
  
  u8g2.begin();
  u8g2.firstPage();

  do {
    u8g2.setFont(u8g2_font_6x13_tr);
    u8g2.drawStr(11,13,"USB POWER MONITOR");
    u8g2.drawStr(11,25,"www.adlerweb.info");
  
    String out;
    out = "Version: ";
    out += version;
  
    char outc[out.length()+1];
    out.toCharArray(outc, sizeof(outc));
  
    u8g2.drawStr(25,50,outc);
  } while ( u8g2.nextPage() );

  delay(1000);
}


void dbug(String str) {
  #ifdef DEBUG
    Serial.print("D:");
    Serial.println(str);
  #endif
}


void loop() {
  unsigned int passed = (millis()-lasttime)/1000;
  
  getReadings();
  checkVcc();
  procUART();
  procSwitch();
  
  if(!u8g2.nextPage() && (millis()-lasttime)/1000 > 0) {
    dbug("FRAME");
    
    if(running && runtime < 0xFFFF) {
      runtime += (millis()-lasttime)/1000;
    }

    lasttime = millis();

    u8g2.firstPage();

    volt = procVolt();
    amp = procAmp();
    procmAh(passed);
    procmWh(passed);

    procDP();
    procDN();
    procSignaling();

    flags[0] = 'C';
    if(running) flags[0] = 'D';
    flags[1] = 'Q';
    if(output) flags[1] = 'S';
    
    switch(signaling) {
      case 1: //Data
        flags[2] = 'f';
        break;
      case 2: //Apple 0.5
      case 3: //Apple 1.0
      case 4: //Apple 2.0
        flags[2] = 'I';
        break;
      case 5: //DCP
        flags[2] = 'J';
        break;
      default: //0=OPEN
        flags[2] = 'H';
    }

    uovAct = uov;
    menuAct = menu;
    
    Serial.print('!');
    Serial.print(volt);
    Serial.print(';');
    Serial.print(amp);
    Serial.print(';');
    Serial.print(mAh);
    Serial.print(';');
    Serial.print(mWh);
    Serial.print(';');
    Serial.print(runtime);
    Serial.print(';');
    Serial.print(running);
    Serial.print(';');
    Serial.print(output);
    Serial.print(';');
    Serial.print(signaling);
    Serial.print(';');
    Serial.print(lastVcc);
    Serial.println();
  }

  switch(menuAct) {
    case 0:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");
    
      drawVolt();
      drawAmp();
    
      drawWatt();
      
      drawAh();
      drawWh();
      
      drawTime(runtime);
    
      switch(uovAct) {
        case 1:
          u8g2.drawStr(115,63,"UV");
          break;
        case 2:
          u8g2.drawStr(115,63,"OV");
          break;
      }
    
      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
    case 1:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");

      drawDP();
      drawDN();
      drawSignaling();
      drawVCC();
      
      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
    case 2:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");
      u8g2.drawStr(0,25,"Lower Limit:");

      drawUMin();

      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
    case 3:
      u8g2.setFont(u8g2_font_6x13_tr);
      u8g2.drawStr(38,13,"USB PWR MONITOR");
      u8g2.drawStr(0,25,"Upper Limit:");

      drawUMax();

      u8g2.setFont(u8g2_font_m2icon_9_tf);
      u8g2.drawStr(0,11,flags);
      break;
  }
  
}

void getReadings(void) {
  #ifdef DEBUG
  Serial.print('.');
  #endif
  
  if(adc_u == 0) {
    adc_u = analogRead(ADC_U)*10;
  }else{
    adc_u = (adc_u + analogRead(ADC_U)*10) / 2;
  }
  
  if(adc_i == 0) {
    adc_i = analogRead(ADC_I)*10;
  }else{
    adc_i = (adc_i + analogRead(ADC_I)*10) / 2;
  }
  
  if(adc_DP == 0) {
    adc_DP = analogRead(ADC_DP)*10;
  }else{
    adc_DP = (adc_DP + analogRead(ADC_DP)*10) / 2;
  }
  
  if(adc_DN == 0) {
    adc_DN = analogRead(ADC_DN)*10;
  }else{
    adc_DN = (adc_DN + analogRead(ADC_DN)*10) / 2;
  }
  
  if(adc_VCC == 0) {
    adc_VCC = analogRead(ADC_VCC)*10;
  }else{
    adc_VCC = (adc_VCC + analogRead(ADC_VCC)) / 2;
  }
  
  if(adc_OV == 0) {
    adc_OV = analogRead(ADC_OV);
  }else{
    adc_OV = (adc_OV + analogRead(ADC_OV)*10) / 2;
  }
}

void checkVcc(void) {
  unsigned int vccchk = getVcc();

  if(vccchk <= BROWNOUT) {
    EEPROM.put(16, mAh);
    EEPROM.put(18, mWh);
    EEPROM.put(22, runtime);
    fetOff();
    digitalWrite(LED, HIGH);
    Serial.println(F("E:VCC"));
    Serial.flush();
    while(1) {}
  }
}

unsigned int getVcc(void) {
  unsigned int adco = (float)adc_VCC * ref_VCC / 10000;
  lastVcc = adco;
  adc_VCC = 0;
  return adco;
}

void procUART(void) {
  unsigned int temp=0;
  if(Serial.available()) {
    switch(Serial.read()) {
      case '1':
        fetOn();
        Serial.println(F("OK"));
        break;
      case '0':
        fetOff();
        Serial.println(F("OK"));
        break;
      case 'r':
        runtime = 0;
        mAh=0;
        mWh=0;
        mAh_c=0;
        mWh_c=0;
        uov=0;
        Serial.println(F("OK"));
        break;
      case 's':
        running = false;
        fetOff();
        Serial.println(F("OK"));
        break;
      case 'S':
        running = true;
        fetOn();
        Serial.println(F("OK"));
        break;
      case '<':
        temp = Serial.parseInt();
        if(temp > 0) {
          u_min = temp;
          EEPROM.put(0, u_min);
          Serial.println(F("OK"));
        }
        break;
        temp = Serial.parseInt();
        if(temp > 0) {
          u_max = temp;
          EEPROM.put(2, u_max);
          Serial.println(F("OK"));
        }
        break;
      case 'u':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_u = temp;
          EEPROM.put(4, ref_u);
          Serial.println(F("OK"));
        }
        break;
      case 'i':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_i = temp;
          EEPROM.put(6, ref_i);
          Serial.println(F("OK"));
        }
        break;
      case 'p':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_i = temp;
          EEPROM.put(8, ref_i);
          Serial.println(F("OK"));
        }
        break;
      case 'n':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_DN = temp;
          EEPROM.put(10, ref_DN);
          Serial.println(F("OK"));
        }
        break;
      case 'v':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_VCC = temp;
          EEPROM.put(12, ref_VCC);
          Serial.println(F("OK"));
        }
        break;
      case 'O':
        temp = Serial.parseInt();
        if(temp > 0) {
          ref_OV = temp;
          EEPROM.put(14, ref_OV);
          Serial.println(F("OK"));
        }
        break;
      case 'V':
        Serial.print(F("#Version: "));
        Serial.println(version);
        break;
      case 'm':
        uartBtn = 'm';
        break;
      case '+':
        uartBtn = '+';
        break;
      case '-':
        uartBtn = '-';
        break;
    }
  }
}

void procSwitch(void) {
  if(( lastkey+100) > millis()) return;
  
  if(lastkeyact) {
    if(digitalRead(SW) == HIGH && digitalRead(RE1) == HIGH && digitalRead(RE2) == HIGH) {
      lastkeyact = false;
      lastkey = millis()+50;
    }

    return;
  }
  
  if(digitalRead(SW) == LOW || uartBtn == 'm') {
    lastkeyact = true;
    lastkey = millis();

    if(menu == 2) {
      unsigned int temp=0;
      EEPROM.get(0, temp);

      if(temp != u_min) EEPROM.put(0, u_min);
    }
    if(menu == 3) {
      unsigned int temp=0;
      EEPROM.get(2, temp);

      if(temp != u_max) EEPROM.put(2, u_max);
    }
    
    menu++;
    if(menu > 3) menu = 0;
  }

  switch(menu) {
    case 0:
      if(digitalRead(RE1) == LOW || uartBtn == '+') {
        lastkeyact = true;
        lastkey = millis();
        if(running) {
          fetOff();
          running = false;
        }else{
          fetOn();
          uov=0;
          running = true;
        }
      }
      if(digitalRead(RE2) == LOW || uartBtn == '-') {
        lastkeyact = true;
        lastkey = millis();
        runtime = 0;
        mAh=0;
        mWh=0;
        mAh_c=0;
        mWh_c=0;
        uov=0;
      }
      break;
    case 1:
      break;
    case 2:
      if(digitalRead(RE1) == LOW || uartBtn == '+') {
        lastkeyact = true;
        lastkey = millis();
        u_min++;
      }
      if(digitalRead(RE2) == LOW || uartBtn == '-') {
        lastkeyact = true;
        lastkey = millis();
        u_min--;
      }
      break; 
    case 3:
      if(digitalRead(RE1) == LOW || uartBtn == '+') {
        lastkeyact = true;
        lastkey = millis();
        u_max++;
      }
      if(digitalRead(RE2) == LOW || uartBtn == '-') {
        lastkeyact = true;
        lastkey = millis();
        u_max--;
      }
      break;
  }
  uartBtn = 0x00;
}

unsigned int procVolt(void) {
  unsigned int adco = (float)adc_u * ref_u / 10000;

  if(adco > 620) { //use secondary ADC
    adco = (float)adc_OV * ref_OV / 1000;
  }

  adc_u=0;
  adc_OV=0; 
  
  return adco;
}

signed int procAmp(void) {
  signed int adco=0;

  
  
  adco = (((signed long)adc_i * ref_i) - ((signed long)ref_i_o*10000)) * ((float)ref_i_mva/100000);
  /*adco = adco - ref_i_o;
  adco *= ref_i_mva;
  adco /= 10;*/

  adc_i = 0;
  
  if(!output) return 0;
  return adco;
}

void procmAh(unsigned int timedelta) {
  boolean neg = false;
  signed int tamp = amp;

  if(tamp < 0) {
    tamp *= -1;
    neg = true;
    mAh_c = 0;
  }
  
  signed long temp = mAh_c;

  temp += (signed long)(tamp * 10 * timedelta) / 36;

  if(neg) {
    mAh -= (temp/100);
  }else{
    mAh += (temp/100);
    mAh_c = temp % 100;
  }
}

void procmWh(unsigned int timedelta) {
  signed long temp = mWh_c;
  temp += (((signed long)amp * timedelta * volt) / 3600);
  mWh_c = temp % 10;
  mWh += (temp/10);
}

void procDP(void) {
  DP = (float)adc_DP * ref_DP / 10000;
  adc_DP = 0;
}

void procDN(void) {
  DN = (float)adc_DN * ref_DN / 10000;
  adc_DN = 0;
}

void procSignaling(void) {
  if(DP > 180 && DP < 220 && DN > 180 && DN < 220) {
    signaling = 2; //Apple 0.5A
  }else if(DP > 180 && DP < 220 && DN > 260 && DN < 300) {
    signaling = 3; //Apple 1.0A
  }else if(DP > 260 && DP < 300 && DN > 180 && DN < 220) {
    signaling = 4; //Apple 2.0A
  }else{ //Check if pins are shorted for DCP
    digitalWrite(ADC_DP, LOW);
    pinMode(ADC_DP, OUTPUT);
    delay(2);
    if(analogRead(ADC_DN) > 16) {
      signaling = 1; //Nope - looks like something else is pulling it HIGH, propably data
    } else{
      pinMode(ADC_DP, INPUT_PULLUP);
      delay(2);
      if(analogRead(ADC_DN) > 16) {
        signaling = 0; //Nothing changed - propably not connected
      } else{
        signaling = 5; //Looks like DCP
      }
    }
    digitalWrite(ADC_DP, LOW);
    pinMode(ADC_DP, INPUT);
  }
}

void drawVolt(void) {
  String out;

  unsigned int adc = volt;

  if(uov==0) {
    if(adc < u_min) {
      Serial.println("UV");
      uov=1;
      fetOff();
      running = false;
    }
    if(adc > u_max) {
      Serial.println("OV");
      uov=2;
      fetOff();
      running = false;
    }
  }

  out =  "U: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,25,outc);
}

void drawAmp(void) {
  String out;

  signed int adc = amp;

  out =  "I: ";
  if(adc < 0) {
    out += '-';
    adc *= -1;
  }
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "A";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(64,25,outc);
}

void drawWatt() {
  String out;

  signed int adc = (signed long)((signed long)volt * (signed long)amp) / 100;

  out =  "P: ";
  
  if(adc < 0) {
    out += '-';
    adc *= -1;
  }
  
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "W";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,37,outc);
}

void drawAh(void) {
  String out = "";

  signed int adc = mAh;

  if(adc<0) {
    out += '-';
    adc*=-1;
  }

  out += adc/1000;
  out += '.';
  adc %= 1000;
  if(adc < 100) out += '0';
  if(adc < 10) out += '0';
  out += adc;
  out += "Ah";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,50,outc);
}

void drawWh(void) {
  String out = "";

  signed int adc = mWh;

  if(adc<0) {
    out += '-';
    adc*=-1;
  }

  out += adc/1000;
  out += '.';
  adc %= 1000;
  if(adc < 100) out += '0';
  if(adc < 10) out += '0';
  out += adc;
  out += "Wh";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(64,50,outc);
}

void drawTime(unsigned int calctime) {
  String out;

  int days = calctime / 86400;
  calctime %= 86400;

  int hours = calctime / 3600;
  calctime %= 3600;

  int minutes = calctime / 60;
  calctime %= 60;

  out  = days;
  out += "d ";
  out += hours;
  out += "h ";
  out += minutes;
  out += "m ";
  out += calctime;
  out += "s";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,63,outc);
}

void drawDP(void) {
  String out;

  unsigned int adc = DP;

  out =  "D+: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,25,outc);
}

void drawDN(void) {
  String out;

  unsigned int adc = DN;

  out =  "D-: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(64,25,outc);
}

void drawSignaling(void) {
  String out;

  switch(signaling) {
    case 0:
      out = "Not connected";
      break;
    case 1:
      out = "Data Connection";
      break;
    case 2:
      out = "Apple 0.5A";
      break;
    case 3:
      out = "Apple 1.0A";
      break;
    case 4:
      out = "Apple 2.0A";
      break;
    case 5:
      out = "USB Charger";
      break;
    default:
      out = "Unknown";
  }

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,37,outc);
}

void drawVCC(void) {
  String out;

  unsigned int adc = lastVcc;

  out =  "Vcc: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,63,outc);
}

void drawUMin(void) {
  String out;

  unsigned int adc = u_min;

  out =  "Umin: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,50,outc);
}

void drawUMax(void) {
  String out;

  unsigned int adc = u_max;

  out =  "Umax: ";
  out += adc/100;
  out += '.';
  adc %= 100;
  if(adc < 10) out += '0';
  out += adc;
  out += "V";

  char outc[out.length()+1];
  out.toCharArray(outc, sizeof(outc));

  u8g2.drawStr(0,50,outc);
}

void fetOff(void) {
  output = false;
  digitalWrite(FET, LOW);
}

void fetOn(void) {
  output = true;
  digitalWrite(FET, HIGH);
}


 

BitBastelei #222 – USB Power Monitor – Hardware-Überlegungen

BitBastelei #222 - USB Power Monitor - Hardware-Überlegungen

(151 MB) 00:18:22

2016-12-11 11:00 🛈

Den USB Charger-Doctor und seine Gefährten dürften die meisten von euch kennen. Die kleinen Geräte können Spannung und Strom eines USB-Anschlusses messen und anzeigen. Leider fehlen mir ein paar Funktionen wie z.B. ein PC-Anschluss um die Daten aufzeichnen zu können. Also: Bauen wir uns selbst einen.

Ergänzungen:

Einem aktuellen Video von Hugatry’s HackVlog nach sollte sich auch Qualcomm Quick Charge erkennen lassen (EN):
https://www.youtube.com/watch?v=UYRZ0t5eyjE

Etwa zeitgleich hat auch Great Scott Labs ein ähnliches Gerät gebaut. Er nutzt statt einer PC-Anbindung eine SD-Karte zum aufzeichnen (EN):
https://www.youtube.com/watch?v=lrugreN2K4w

BitBastelei #173 – Arduino Solar-Monitor

BitBastelei #173 - Arduino Solar-Monitor

(286 MB) 00:34:45

2015-11-08 11:00 🛈

Vor etwas längerer Zeit hatte ich einen USBASP mit ATMega8 zusammen mit diversen Stromsensoren ein Solarmonitoring gerbaut. Bis auf etwas bessere Befestigungen lief das System bisher fehlerfrei, jedoch muss nur für das Monitoring ein Netbook laufen um die Daten per USB anzunehmen und auf den Netzwerkanschluss weiterzuleiten. Da ohnehin eine Erweiterung ansteht machen wir es direkt richtig: Der USBASP wird durch einen deutlich größeren ATMega ersetzt, mit mehr Strom- und Spannungssensoren versorgt und erhält letztendlich eine passende Netzwerkkarte um die Daten ohne Umweg an meinen Server zu senden.

BitNotice #64 – Mailbag: Mini-DMV/ACS712

BitNotice #64 - Mailbag: Mini-DMV/ACS712

(34 MB) 00:03:03

2014-10-15 19:09 🛈

Auch wenn der Zoll es nicht mag: Heute gab es eine Ladung Mini-Voltmeter und Stromsensoren… Dumm nur, dass momentan etwas wenig Sonne als Motivation für weitere Solarbasteleien zur Verfügung steht…